Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures
نویسندگان
چکیده
Contrast in capillary pressure of heterogeneous permeable media can have a significant effect on the flow path in two-phase immiscible flow. Very little work has appeared on the subject of capillary heterogeneity despite the fact that in certain cases it may be as important as permeability heterogeneity. The discontinuity in saturation as a result of capillary continuity, and in some cases capillary discontinuity may arise from contrast in capillary pressure functions in heterogeneous permeable media leading to complications in numerical modeling. There are also other challenges for accurate numerical modeling due to distorted unstructured grids because of the grid orientation and numerical dispersion effects. Limited attempts have been made in the literature to assess the accuracy of fluid flow modeling in heterogeneous permeable media with capillarity heterogeneity. The basic mixed finite element (MFE) framework is a superior method for accurate flux calculation in heterogeneous media in comparison to the conventional finite difference and finite volume approaches. However, a deficiency in the MFE from the direct use of fractional flow formulation has been recognized lately in application to flow in permeable media with capillary heterogeneity. In this work, we propose a new consistent formulation in 3D in which the total velocity is expressed in terms of the wetting-phase potential gradient and the capillary potential gradient. In our formulation, the coefficient of the wetting potential gradient is in terms of the total mobility which is smoother than the wetting mobility. We combine the MFE and discontinuous Galerkin (DG) methods to solve the pressure equation and the saturation equation, respectively. Our numerical model is verified with 1D analytical solutions in homogeneous and heterogeneous media. We also present 2D examples to demonstrate the significance of capillary heterogeneity in flow, and a 3D example to demonstrate the negligible effect of distorted meshes on the numerical solution in our proposed algorithm. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Numerical Simulation and Estimation of the Transvers Macrodispersivity Coefficient of Aqueous Phase (Miscible) Contaminants of Salt Water in a Heterogeneous and Homogeneous Porous Media
Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two flu...
متن کاملAn Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field
We consider the system of equations governing an incompressible immiscible two-phase flow within an heterogeneous porous medium made of two different rock types. Since the capillary pressure function depends on the rock type, the capillary pressure field might be discontinuous at the interface between the rocks. We introduce multivalued phase pressures to give a sense to the transmission condit...
متن کاملAsymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. II. Nonclassical Shocks to Model Oil-Trapping
We consider a one-dimensional problem modeling two-phase flow in heterogeneous porous media made of two homogeneous subdomains, with discontinuous capillarity at the interface between them. We suppose that the capillary forces vanish inside the domains, but not on the interface. Under the assumption that the gravity forces and the capillary forces are oriented in opposite directions, we show th...
متن کاملTwo-phase flow in porous media : dynamic capillarity and heterogeneous media
We investigate a two-phase porous media flow model, in which dynamic effects are taken into account in phase pressure difference. We consider a one-dimensional heterogeneous case, with two adjacent homogeneous blocks separated by an interface. The absolute permeability is assumed constant, but different in each block. This may lead to the entrapment of the nonwetting phase (say, oil) when flowi...
متن کاملApproximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium
Neglecting capillary pressure effects in two-phase flow models for porous media may lead to non-physical solutions: indeed, the physical solution is obtained as limit of the parabolic model with small but non-zero capillarity. In this paper, we propose and compare several numerical strategies designed specifically for approximating physically relevant solutions of the hyperbolic model with negl...
متن کامل